Mike Wilbert

www.mike-wilbert.com

in Linkedin

G github

ORCID

Profile

Core strengths: Scientific software development \cdot HPC \cdot Machine Learning

Expertise: C++/Python · MPI parallelization · Large-scale data analysis

Goal: Apply skills to real-world challenges in Data Science, ML Engineering, or Simulation Software

SKILLS

Programming

Python C/C++FORTRAN Git

Linux

Languages

German (native) $C2^*$ EnglishC1*FrenchB1*A1* • Spanish

ML & Data Science

NumPy Pandas scikit-learn TensorFlow/Keras data visualization

HPC & Performance

MPI OpenACC/CUDA optimization

Tools & Workflow

 $\operatorname{GitHub}/\operatorname{GitLab}$ LaTeX CI/CD basics (GitHub Actions)

Web Tech

HTML/CSS JavaScript PHP

EDUCATION

Ph.D. (Physics)

(Physics)

(Physics)

M.Sc.

B.Sc.

2019 - 2023

2016 - 2019

2013 - 2016

- Ruhr-University Bochum
- Ruhr-University Bochum
- Ruhr-University Bochum

^{*}Using CEFR rating for language proficency.

Mike Wilbert Page 2

PROJECTS

Turbulence

Implemented a pseudo-spectral solver for 2D turbulence, optimized with GPU acceleration for real-time visualization.

Kelvin-Helmholtz Developed a finite-volume code for large-scale fluid simulations; parallelized for distributed HPC runs.

Further details available in my port folio at: mike-wilbert.com

EXPERIENCE

Postdoctoral Researcher

Developed a finite-volume simulation code in C++/Fortran for modeling complex fluid dynamics, optimized for numerical stability and accuracy.

2023 - now

Implemented a **relativistic two-fluid plasma model** with advanced diagnostics, enabling deeper insights into high-energy processes.

Enhanced and parallelized a **pseudo-spectral turbulence simulation framework (MPI, OpenACC/CUDA)** for large-scale HPC runs, improving scalability on supercomputing clusters.

Conducted extensive data analysis in Python (NumPy, SciPy).

PhD Researcher

Designed a C++ pseudo-spectral solver with immersed boundary method, simulating fluid flows in complex geometries.

2019 - 2023

Applied the solver to model the **DRESDYN** dynamo experiment (Helmholtz-Zentrum), delivering insights into fluid–magnetic field interactions.

Implemented **MPI-based parallelization** and optimized runtime performance for multi-node HPC clusters.

Managed large simulation datasets (TB scale), developing **custom Python pipelines for analysis and visualization**.

Master's Research Project

Integrated a **Particle-in-Cell code** into a finite-volume solver (Fortran, C++), enabling simulations of **particle acceleration in reconnection scenarios**.

2018 - 2019

Built tools in Python for postprocessing.